Novel clustering algorithm for microarray expression data in a truncated SVD space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Clustering Algorithm for Microarray Expression Data in A Truncated SVD Space

MOTIVATION This paper introduces the application of a novel clustering method to microarray expression data. Its first stage involves compression of dimensions that can be achieved by applying SVD to the gene-sample matrix in microarray problems. Thus the data (samples or genes) can be represented by vectors in a truncated space of low dimensionality, 4 and 5 in the examples studied here. We fi...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

A nonparametric algorithm for clustering microarray data

Cluster analysis is a crucial tool in several biological and medical studies dealing with microarray data. Such studies pose challenging statistical problems due to dimensionality issues, being the number of variables much higher than the number of observations. Here, we present a novel approach to clustering of microarray data via nonparametric density estimation, based on the following steps:...

متن کامل

Hybrid Algorithm for Clustering of Microarray Data

Clustering is a crucial step in the analysis of gene expression data. Its goal is to identify the natural clusters and provide a reliable estimate of the number of distinct clusters in a given data set. In this paper we propose new hybrid algorithm for clustering of microarray data based on spectral clustering and k-means. Our algorithm consist of four steps, including preprocessing or filterin...

متن کامل

Clustering analysis of microarray gene expression data by splitting algorithm

Preprint submitted to Elsevier Science 29 April 2003 A clustering method based on recursive bisection is introduced for analyzing microarray gene expression data. Either or both dimensions for the genes and the samples of a given microarray dataset can be classi£ed in an unsupervised fashion. Alternatively, if certain prior knowledge of the genes or samples is available, a supervised version of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2003

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btg053